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e, Image Measurement,Expe
tation Propagation, Sparsity Prior, Wavelet TransformationAbstra
tWe relate 
ompressed sensing (CS) withBayesian experimental design and providea novel e�
ient approximate method forthe latter, based on expe
tation propaga-tion. In a large 
omparative study aboutlinearly measuring natural images, we showthat the simple standard heuristi
 of mea-suring wavelet 
oe�
ients top-down system-ati
ally outperforms CS methods using ran-dom measurements; the sequential proje
tionoptimisation approa
h of (Ji & Carin, 2007)performs even worse. We also show that ourown approximate Bayesian method is able tolearn measurement �lters on full images e�-
iently whi
h outperform the wavelet heuris-ti
. To our knowledge, ours is the �rst su
-
essful attempt at �learning 
ompressed sens-ing� for images of realisti
 size. In 
ontrast to
ommon CS methods, our framework is notrestri
ted to sparse signals, but 
an readily beapplied to other notions of signal 
omplexityor noise models. We give 
on
rete ideas howour method 
an be s
aled up to large signalrepresentations.1. Introdu
tionThere has been a lot of re
ent interest in the areaof 
ompressed sensing (CS) (Candès et al., 2006;Donoho, 2006), where it is argued that if signals 
anbe expe
ted to be 
ompressible due to sparseness aftersome linear transform, then they 
an be re
onstru
tedfrom a number of measurements signi�
antly below theNyquist/Shannon limit, if the measurement design isnot too regular. In this paper, we relate CS to themore general notion of statisti
al (Bayesian) experi-mental design.Preliminary work. Under review by the International Con-feren
e on Ma
hine Learning (ICML). Do not distribute.

Through this view, 
hara
teristi
s of signals and al-gorithms, de�ned in an abstra
t mathemati
al way inthe CS literature so far, be
ome understandable andworkable. The experimental design approa
h appliesto signals of low 
omplexity in general, not only tosparse ones. It has the potential to 
learly outper-form the randomised designs, favoured by theoreti
alCS arguments, in 
ases where signals are not well-des
ribed by 
ommon CS assumptions. For exam-ple, CS has been viewed with some s
epti
ism so farby resear
hers in 
omputer vision and image statisti
s(Weiss et al., 2007). While images exhibit transformsparsity to some degree, purely random measurementdesigns 
an be suboptimal for them. The reason is thatthere is more to low-level image statisti
s than spar-sity. Mu
h of this knowledge 
an be modeled tra
tably(Simon
elli, 1999) and 
ould therefore be in
orporatedinto a Bayesian experimental design ar
hite
ture. Toour knowledge, the 
urrent CS re
onstru
tion s
hemesare purely estimation-based and la
k proper represen-tations of un
ertainty (whi
h is what fundamentallydrives experimental design), and the theory deals ex-
lusively with signals whi
h are unstru
tured ex
eptfor random sparsity. We present experimental resultssheding more light on the relationship between CSand images. Similar to (Weiss et al., 2007), we �ndthat standard approa
hes to linear image measure-ment (wavelet 
oe�
ients) give signi�
antly better re-
onstru
tion results than using random measurementsfavoured by CS, even if modern CS re
onstru
tion al-gorithms are applied. Yet, our experimental eviden
eis more substantial than theirs. Beyond that, we showthat our e�
ient approximation to sequential Bayesiandesign 
an be used to learn measurements whi
h in-deed outperform measuring wavelet 
oe�
ients top-down. Our method provides a pra
ti
ally e�
ient so-lution to the problem posed in (Weiss et al., 2007),namely how to learn measurement �lters automati
allyfrom data (using very little 
on
rete knowledge aboutthe signal 
lass) whi
h perform 
lose to or even bet-ter than �standard� ones obtained through de
ades ofresear
h and experien
e. In 
ontrast, the un
ertain
omponents analysis algorithm suggested by them re-



Compressed Sensing and Bayesian Experimental Designquires a large database of image pat
hes to be run, and
ould hardly be s
aled up to the realisti
 dimensionstreated here1.An approximate Bayesian approa
h to 
ompressedsensing has been presented in (Ji & Carin, 2007), mak-ing use of sparse Bayesian learning (SBL) (Tipping,2001). Our method is based on a di�erent, more gen-eral inferen
e approximation, expe
tation propagation(Minka, 2001), and outperforms theirs very signi�-
antly, for predi
tion based on the same design and,even more so, for sequential design optimisation, aswe show in 
omparative experiments below. More-over, strongly underdetermined problems (many morevariables than observations) are dealt with more e�-
iently in our framework. In addition, our frameworkis generalised easily to non-Gaussian observation likeli-hoods, skew prior terms, and generalised linear models(Gerwinn et al., 2008), and our methodology, our 
om-parisons, as well as our dis
ussion here have a broaders
ope. Our method is an extension of the s
heme in(Seeger et al., 2007). However, the appli
ations toimages 
onsidered here are orders of magnitude largerthan theirs, and several novel ideas are proposed herein order to in
rease 
omputational e�
ien
y substan-tially. While mu
h work has been done in statisti
s onexperimental design for the 
lassi
al Gaussian-linearmodel, Gaussian priors are entirely inappropriate forimages2, and designs optimized for them are subopti-mal (see also (Seeger et al., 2007)). We are not awareof existing methods for the model used here, whi
hs
ale 
omparable to ours, with the ex
eption of (Ji &Carin, 2007).A di�erent approa
h for optimising measurement de-sign is given in (Elad, 2007), where X is designed apriori with the aim of making its rows maximally de-
oherent. In our setup, X is designed sequentially,using Bayesian information 
riteria.The stru
ture of the paper is as follows: The exper-imental design view on CS is detailed in Se
tion 2.Our framework for approximate inferen
e is des
ribedin Se
tion 3, where we also show how to apply it tolarge problems, espe
ially in sequential experimentaldesign. Our approa
h is validated through a series ofexperiments, 
omparing it to (Ji & Carin, 2007) and
ommon CS methods on arti�
ial data (Se
tion 4.1),and analysing the suitability of CS and Bayesian ex-1Their experiments are on 4 × 4 image pat
hes, whileours run e�
iently on 64 × 64 images.2Re
onstru
tion under the Gaussian-linear model issimply the method of least squares, often referred to as�linear re
onstru
tion�. Mu
h of the improved performan
ethrough CS is due to the use of non-linear sparse re
on-stru
tion te
hniques.

perimental design on natural images (Se
tion 4.2).2. Compressed Sensing andExperimental DesignCompressed sensing (CS) (Candès et al., 2006;Donoho, 2006) 
an be motivated as follows. Sup-pose a signal, su
h as an image or a sound waveform,is measured and then transferred over some 
hannelor stored. Traditionally, the measurement obeys theNyquist/Shannon theorem, allowing for an exa
t re-
onstru
tion of the (band-limited) signal if there is nomeasurement noise. However, what follows is usuallysome form of lossy 
ompression, exploiting redundan-
ies and non-per
eptibility of losses. Given that, 
anthe information needed for a satisfa
tory re
onstru
-tion not be measured below the Nyquist frequen
y(this is 
alled undersampling)? In many key appli
a-tions today, the measurement itself is the main bottle-ne
k for 
ost redu
tions or higher temporal/spatial res-olution. Re
ent theoreti
al results indi
ate that under-sampling should work well if randomized designs areused, and if the signal re
onstru
tion method spe
i�-
ally takes the �
ompressibility� into a

ount.Bayesian experimental design en
ompasses the CSproblem. Here, the �
ompressibility� of signals is en-
oded in a prior distribution, under whi
h signals oflow 
omplexity in general, or high (transform) sparsityin parti
ular, have most mass. While an undersam-pling violates the Nyquist theorem, signals 
an oftenstill be re
onstru
ted if they are su�
iently likely un-der the prior. But not every way of undersampling willdo. Experimental design is 
on
erned with optimisingthe measurement stru
ture (
alled design), so as toobtain the desired information at the lowest possible
ost. This is easily explained by 
onsidering the modelof interest here. Let u ∈ R
n be latent variables (pixelsof an image), and let y ∈ R

m be noisy measurementsthereof. The model 
lass of interest is
P (u|y) ∝ N(y|Xu, σ2I)

q
∏

i=1

ti(si), s = Bu. (1)The likelihood P (y|u) is Gaussian and underdeter-mined (n > m). The prior3 is a produ
t of univariatenon-Gaussian potentials ti(si). It is 
omputationallyadvantageous, yet not essential, that the log ti be 
on-
ave (Seeger, 2008), and in this paper we use Lapla
ianpotentials
ti(si) =

τ

2
e−τ |si|, (2)3We do not require that the prior potential is a
tuallya normalisable distribution over u, the models of interesthere are of the undire
ted Markov random �eld (or �energy-based�) type.



Compressed Sensing and Bayesian Experimental Designwhi
h are of this sort. If number of image pixels nis large, it is important for 
omputational e�
ien
ythat matrix-ve
tor multipli
ations (MVMs) with Band BT (less important: with X, XT ) 
an be donee�
iently, and that B does not have to be stored ex-pli
itly.The unknown signal u (an image for now) should be�
ompressible�, i.e. it should exhibit transform spar-sity4: after some �xed linear mapping B, su
h as awavelet transform, s = Bu has many 
oe�
ients si
lose to zero. An image 
oder would set these to ex-a
tly zero, thereby 
ompressing the image. �Expe
tedtransform sparsity� is en
oded in a sparsity prior, inour 
ase the produ
t of Lapla
ians (2). As opposed toa Gaussian, a Lapla
e distribution 
on
entrates moremass 
lose to zero, for
ing 
oe�
ients to be very small.On the other hand, the Lapla
ian also has more massin the tails, whi
h allows for o

asional large values.These points are explained further in (Seeger, 2008;Tipping, 2001).Next, the design is X, the measurement matrix. Inour example, ea
h row of X is a linear �lter spe
i-fying a single image measurement. In this paper, weassume that all rows of X have unit norm5. The prob-lem of experimental design is how to 
hoose X amongmany 
andidates of the same 
ost, so that subsequentmeasurements allow for the best re
onstru
tion of u.This de
ision has to be taken without doing real mea-surements for most 
andidates. In a Bayesian variant,the posterior distribution P (u|y) en
odes all presentknowledge. To s
ore a 
andidate X∗ (new rows of
X), assume for the moment that the out
ome y∗ isknown. We 
an measure the de
rease in un
ertaintyfrom P (u|y) to P (u|y,y∗) by the entropy di�eren
e
H[P (u|y)] − H[P (u|y,y∗)]. Not knowing y∗, we in-tegrate it out using P (y∗|y) =

∫

P (y∗|u)P (u|y) du.This expe
ted information s
ore drives the optimisa-tion of the design. It is 
lear that su
h s
ores are fun-damentally based on the posterior as representation ofun
ertainty, so that algorithms whi
h merely estimategood solutions from given data 
annot be used dire
tlyin order to 
ompute them6. With su
h methods, eitherrough rules of thumb have to be followed to obtain a4In our experiments, we use an extended notion of spar-sity, see Se
tion 3.2.5When designing X, it is important to keep its rowsof the same s
ale. Otherwise, a measurement 
an alwaysbe improved (at �xed noise level σ2) simply by in
reasingits norm. Put di�erently, we pla
e a prior on X whi
h isuniform over all matri
es with rows of unit norm.6It is one thing to learn to predi
t well, yet a di�erentissue to estimate its own un
ertainty well, and methodsemploying �premature sparsi�
ation� often perform badlyw.r.t. the latter (see Se
tion 4.1).

design (�make it random� in CS), or many measure-ments have to be taken in a trial-and-error fashion. InBayesian experimental design, a permanently re�nedun
ertainty representation is used to avoid uninforma-tive data sampling, so often many fewer real measure-ments are required.3. Approximate Inferen
eBayesian inferen
e is in general not analyti
allytra
table for models of the form (1), and has to beapproximated. Moreover, the appli
ations of inter-est here demand a high e�
ien
y in many dimensions(n = 4096 in the natural image experiments here). Im-portantly, Bayesian experimental design does not onlyrequire inferen
e just on
e, but many times in a se-quential fashion. We make use of the expe
tation prop-agation (EP) method (Minka, 2001), together with arobust and e�
ient representation for Q(u) ≈ P (u|y).Our framework has previously been used in a di�er-ent 
ontext (Seeger, 2008), where details 
an be foundwhi
h are omitted here. As a novelty, we will show herehow the framework 
an be run e�
iently for large n,and how sequential design optimisation 
an be doneorders of magnitude faster.In EP, the posterior P (u|y) is approximated by aGaussian Q(u) with free (variational) parameters b,
π, whi
h are formally introdu
ed by repla
ing ti(si)by t̃i(si) = ebisi−πis

2

i
/2 in (1). The distribution Q(u)is represented by lower triangular L and γ,

LLT = σ−2XT X + BT
ΠB = CovQ[u]−1,

γ = L−1(σ−2XT y + BT b), Π = diag π,so that EQ[u] = L−T γ. The (bi, πi) are then updatedsequentially by mat
hing the Gaussian moments of thetilted distributions
P̂i(u) ∝ N(y|Xu, σ2I)

∏

j 6=i

t̃j(sj)t̃i(si)
1−ηti(si)

ηwith the new Q′(u). Here, η ∈ (0, 1] is a fra
tionalparameter7. In ea
h lo
al update, we need to 
omputethe non-Gaussian moments of the marginal P̂i(si), andto update the Q(u) representation, whi
h is done by an
O(n2) Cholesky update of L. Note that (Ji & Carin,2007) employ the variational mean �eld approxima-tion of (Tipping, 2001), whi
h is spe
i�
 to sparse lin-ear models (more pre
isely, all ti have to be Gaussians
ale mixtures, thus even fun
tions), while EP 
an be7η = 1 gives standard EP, but 
hoosing η < 1 
an in-
rease the robustness of the algorithm on the sparse linearmodel signi�
antly (Seeger, 2008). We use η = 0.9 in allour experiments.
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ation to models with skewpriors or non-Gaussian skew likelihoods as well (Ger-winn et al., 2008).In our appli
ations of sequential design, we need tos
ore the informativeness of new 
andidates x∗ (as rowof X), whi
h we do by the entropy di�eren
e (see Se
-tion 2). If Q′ is the approximate posterior after in-
luding x∗, then 2H[Q′] = log |CovQ′ [u]| + C, where
Q′ di�ers from Q in that (X ′)T X ′ = XT X + x∗xT

∗ ,and π → π′. We approximate the entropy di�eren
eby assuming that π′ = π, when
e
H[Q] − H[Q′] =

1

2
log

(

1 + σ−2xT
∗ CovQ[u]x∗

)

.Sin
e ‖x∗‖ = 1 by assumption, this s
ore is maximizedby 
hoosing x∗ along the prin
ipal (leading) eigendi-re
tion8 of CovQ[u]. The same s
ore is used by (Ji &Carin, 2007).3.1. Large-S
ale Appli
ationsThere are two major issues with trying to apply ourmethod for large sizes n. First, the EP site updatesare done in random sweeps over n sites, be
ause it isnot 
lear whi
h parti
ular site ordering leads to fastest
onvergen
e. This problem is severe in our sequentialdesign appli
ation to natural images, sin
e there aremany small 
hanges to X, y (individual new mea-surements), after ea
h of whi
h EP 
onvergen
e hasto be regained. We approa
h it by forward s
oringmany site 
andidates before ea
h EP update, therebyalways updating the one whi
h gives the largest pos-terior 
hange. This is detailed just below. Se
ond,the robust Q representation of (Seeger, 2008) is of size
O(n2), and ea
h update 
osts O(n2). We sket
h a dif-ferent representation of size O(m2) below, whi
h 
anbe used to drive our framework as well. In 
ontrast, (Ji& Carin, 2007) use a heuristi
 of setting many of the πito ∞ early in the iteration, whi
h leads to mu
h worseresults than we obtain (see Se
tion 4.1, Se
tion 4.2).Our sele
tive updating s
heme for EP hinges on thefa
t that we 
an maintain all site marginals h, ρ,
Q(si) = N(hi, ρi), up to date at all times. For a site
i, we 
an quantify the 
hange of Q through an updatethere by D[Q′(si) ‖Q(si)] (Q′ the posterior after theupdate at i), whi
h 
an be 
omputed in O(1). Impor-tantly, D[Q′(u) ‖Q(u)] = D[Q′(si) ‖Q(si)] (be
ause
Q(u|si) = Q′(u|si)), so the s
ore pre
isely measuresthe global amount of 
hange Q → Q′. We maintaina list of 
andidate sites, whi
h are s
ored before ea
hEP update, and the update is done for the winneronly. The list is then evolved by repla
ing the lower8We 
ompute x∗ by the Lan
zos algorithm.

half of worst-s
oring sites by others randomly drawnfrom {1, . . . , q}. Importantly, the marginals h, ρ 
anbe updated along with the representation, at the ex-pense of only one additional L ba
ksubstitution andMVM with B. Namely, if π′
i = πi +∆πi, b′i = bi +∆bi,and w := BL−T (L−1BT

i,·), then
ρ′ = ρ−

∆πi

1 + ρi∆πi
w ◦w, h′ = h +

∆bi − hi∆πi

1 + ρi∆πi
w.Here, L−1BT

i,· has to be 
omputed for the L updateanyway. This idea is used in the experiments des
ribedin Se
tion 4.2.For large n, storing an n×n matrix in memory be
omesprohibitive. In a less 
ostly representation, we exploit
m ≪ n. We require9 that B = I. The Woodburyformula gives

CovQ[u] = Π
−1 − Π

−1XT L−T L−1XΠ
−1,where LLT = I + XΠ

−1XT , so L (di�erent fromabove) is of size m2 only. An EP update requires
O(m2) and two MVMs with X, rather than O(n2)above. While this representation is exa
t, it is numer-i
ally less robust to update than the O(n2) one.3.2. Image Model. Other MethodsIn this se
tion, we provide further details about the
on
rete model we use in our experiments with natu-ral images. Our prior en
ourages two di�erent notionsof sparsity in an image. First, a multi-s
ale wavelettransform of u should be sparse, modeling the obser-vation that natural images 
an be 
ompressed well ina wavelet domain. Se
ond, the �nite di�eren
es in thehorizontal and verti
al dire
tion should exhibit spar-sity, a

ounting for spatial smoothness often found inimages10. A frequently used penalty term for the lat-ter is the L1 norm of the image gradient, also knownas total variation.Our model is an instan
e of (1), where all ti are Lapla-
ian (2). s, and therefore B, de
ompose into two dif-ferent parts: BT = (B(sp)T B(tv)T ). Equivalently, theprior is the produ
t of two potentials. The transformsparsity potential is a sparsity prior on the wavelet
oe�
ients of u. Note that the Lapla
e distributionis a sensible 
andidate to �t wavelet 
oe�
ient his-tograms from natural images (Simon
elli, 1999). Thus,9More generally, BT

ΠB must be easy to invert. If Bis invertible and B−1-MVM feasible, we represent Q(s)rather than Q(u).10Re
all what we mean by sparsity from Se
tion 2: most
oe�
ients are for
ed to be small, by allowing some to belarge. O

asional large 
omponents in the gradient 
orre-spond to edges in the image.
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B(sp) ∈ R

n×n is a multi-s
ale orthonormal wavelettransform, and the potential is exp(−τsp‖B
(sp)u‖1).The total variation potential is a Lapla
e prior on theimage gradient, i.e. the di�eren
es between horizontaland verti
al pixel neighbours11. B(tv) ∈ R

2(n−√
n)×n isa sparse stru
tured matrix, mapping the image u to itsgradient. Here, we assume that n = 22k for simpli
ity.The total variation potential is exp(−τtv‖B

(tv)u‖1).Therefore, we have q ≈ 3n for the size of s. Also, thepotentials 
ome with di�erent s
ale parameters τsp,
τtv. Importantly, neither of B(sp), B(tv) has to bestored in memory, and MVM with B or BT 
an bedone in O(n).We also brie�y des
ribe the methods we 
ompareagainst. Most of them 
ome with a transform spar-sity potential only, so that s = B(sp)u. The methodof (Ji & Carin, 2007) is 
alled SBL here. In Lpre
onstru
tion, ŝ = argmin{‖s‖p |XB(sp)T s = y},
û = B(sp)T ŝ. For L2 we just solve the normal equa-tions, while for L1 this is a linear program. Notethat the latter is used in many CS publi
ations (Can-dès et al., 2006; Donoho, 2006). A method withtransform sparsity and total variation potential, 
alled
L1 + TV here, is given by the following quadrati
 pro-gram: û = argmin 1

2‖y − Xu‖2
2 + τspσ

2‖B(sp)u‖1 +
τtvσ2‖B(tv)u‖1 (Candès & Romberg, 2004). We usedthe following 
ode in our experiments:SBL: www.e
e.duke.edu/∼shji/BCS.html
L1: www.a
m.
alte
h.edu/l1magi
/
L1 + TV: www.stanford.edu/∼mlustig/4. ExperimentsIn this se
tion, we provide experimental results for dif-ferent instan
es of our framework, 
omparing to CSand approximate Bayesian methods on syntheti
 data(Se
tion 4.1), and on the task of measuring naturalimages (Se
tion 4.2).4.1. Arti�
ial SetupsIt is 
ustomary in the CS literature to test methodson syntheti
 data, generated following the �truly sparseand otherwise unstru
tured� assumptions under whi
hasymptoti
 CS theorems are proven. We do the samehere, expli
itly using the �(non-)uniform spikes� (Ji &Carin, 2007), but 
over some other heavy-tailed dis-tributions as well. It seems that not many signals ofreal-world interest are stri
tly and randomly sparse, so11This potential on its own is not normalisable as distri-bution over u, being invariant against adding a 
onstantto all pixels.

that studies looking at the robustness of CS theoreti-
al 
laims are highly important. In this se
tion, signalsare sparse as su
h, so that B = I and u = s here. We
ompare methods des
ribed in Se
tion 3.2. It is im-portant to stress that all methods 
ompared here (ex-
ept for L2) are based on exa
tly the same underlyingmodel (1) with B = I, and di�eren
es arise only in thenature of 
omputations (approximate Bayesian versusmaximum a-posteriori optimisation) and in whether Xis sequentially designed (EP, SBL) or 
hosen at ran-dom (Lp re
onstru
tion; we follow CS theory (Candèset al., 2006; Donoho, 2006) and sample rows of X uni-formly of unit norm). Results are shown in Figure 1.
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 signals u ∈
R

512. Shown are L2-re
onstru
tion errors (mean±std.dev.over 100 runs). All methods start with same random initial
X (m = 40), then �(rand)� add random rows, �(opt)� op-timise new rows sequentially. Noise varian
e σ2 = 0.005,prior s
ale τ = 5. SBL: (Ji & Carin, 2007), Lp: Lp re-
onstru
tion, EP: our method. (a-
): i.i.d. zero mean, unitvarian
e Gaussian, Lapla
ian (Eq. 2), Student's t (3 d.o.f.).(d): n

2
of ui = 0, n

4
exponential de
ay 1, . . . , 0, n

4
minusthat, randomly permuted. (e-f): 20 ui 6= 0 at random;(e) uniform spikes, ui ∈ {±1}; (f): non-uniform spikes,

ui ∼
1

4
+ |t|, t ∼ N(0, 1); as in (Ji & Carin, 2007). Distri-butions in (d-f) normalised to unit varian
e.The �sparsity� (or super-Gaussianity) of the signal dis-tributions in
reases from (1a) to (1e-f). For Gaussiansignals (1a), L2 re
onstru
tion based on random mea-surements is optimal. While all CS methods and SBL



Compressed Sensing and Bayesian Experimental Design(random and designed) lead to large errors, EP withdesign mat
hes the L2 results, thus shows robust be-haviour. For Lapla
ian and Student's t signals (1b-
), designed EP outperforms L2 re
onstru
tion signif-i
antly, while even the CS L1 method still does worsethan simple least squares. SBL performs poorly in allthree 
ases with signals not truly sparse, thus is notrobust against rather modest violations of the stri
tCS assumptions. Its non-robustness is also witnessedby large variations a
ross trials.On the other hand, L2 performs badly on truly sparsesignals. In all 
ases (1d-f), EP with design signi�-
antly outperforms all other methods, in
luding de-signed SBL, with spe
ial bene�ts at rather small num-bers of measurements. SBL does better now with trulysparse signals, and is able to outperform L1.From the superior performan
e of EP with design onall signal 
lasses, we 
on
lude that experimental de-sign 
an sequentially �nd measurements that are sig-ni�
antly better than random ones, even if signals aretruly sparse. Moreover, the superior performan
e isrobust against large deviations away from the under-lying model, more so even than 
lassi
al L1 or L2 es-timation. The poor performan
e of SBL (Ji & Carin,2007) seems to 
ome from their desire for �prematuresparsi�
ation�. During their iterations, many πi are
lamped to +∞ early for e�
ien
y reasons. This doesnot hurt mean predi
tions from 
urrent observationsmu
h, but a�e
ts their 
ovarian
e approximation dras-ti
ally: most dire
tions not supported by the dataright now are somewhat ruled out for further mea-surements, sin
e posterior varian
e along them (whi
hshould be large!) is shrunk in their method. In 
on-trast, in our EP method, none of the πi be
ome verylarge with modest m, and our 
ovarian
e approxima-tion seems good enough to su

essfully drive experi-mental design. Without premature sparsi�
ation, ours
heme is still e�
ient, sin
e the most relevant siteupdates are found a
tively, and the need to eliminatevariables does not arise.4.2. Natural ImagesIn this se
tion, we are 
on
erned about �nding linear�lters whi
h allow for good re
onstru
tion of naturalimages from noisy measurements thereof. Sin
e nat-ural images exhibit sparsity in wavelet or Fourier do-mains, CS theory seems to suggest that random mea-surements should be well-suited for this purpose, andthere have been 
onsiderable e�orts to develop hard-ware whi
h 
an perform su
h random measurements
ost-e�
iently (Duarte et al., 2008). On the otherhand, mu
h is known about low level natural image

statisti
s, and powerful linear measurement transformshave emerged there, su
h as multi-s
ale wavelet trans-forms, based on whi
h natural image re
onstru
tionshould be substantial better than for random measure-ments (Weiss et al., 2007).The sparsity of images in a wavelet domain is highlystru
tured, there is a 
lear ordering among the 
oe�-
ients from 
oarse to �ne s
ales: natural images typ-i
ally have mu
h more energy in the 
oarse-s
ale 
o-e�
ients, and 
oe�
ients with very small values arepredominantly found in the �ne s
ales. In our ex-periments, we employ a simple heuristi
 for linearlymeasuring images, 
alled wavelet heuristi
 in the se-quel: every measurement 
omputes a single wavelet
oe�
ient, and the sequential ordering of the mea-surements is deterministi
 top-down, from 
oarse to�ne s
ales12. This ordering is a pragmati
 strategy: ifmainly the 
oarse-s
ale 
oe�
ients are far from zero,they should be measured �rst13. Do state-of-the-artCS re
onstru
tion algorithms, based on random linearimage measurements, perform better than simple L2re
onstru
tion based on the wavelet heuristi
? Andhow does Bayesian sequential design perform on thistask, if the model des
ribed in Se
tion 3.2 is used?Note that no prior knowledge about typi
al orderingor dependen
e among wavelet 
oe�
ients in en
odedin this model either. Results of our study are given inFigure 2.In fa
t, we started our exploration with what is shownin (2a), where 100 initial �lters are drawn at random(ex
ept for L2(heur)). Intrigued by the fa
t that thewavelet heuristi
 method L2(heur) outperformed allCS variants signi�
antly, we tried to give them a head-start, supplying m = 100, 200, 400 wavelet heuristi
measurements initially (2b-d). However, the system-ati
 under-performan
e of methods whi
h have spar-sity regularizers built in, yet do random rather thanwavelet measurements, remains 
onsistently present.From these results we 
on
lude, mu
h as (Weiss et al.,2007) argued on theoreti
al grounds, that if naturalimages are to be measured su

essively by unit norm,but otherwise un
onstrained linear �lters, then draw-ing these �lters at random leads to signi�
antly worse12This ordering follows the re
ursive de�nition of su
htransforms: downsampling by fa
tor two (
oarse), horizon-tal di�eren
es, verti
al di�eren
es, diagonal 
orre
tions atea
h stage. Our ordering is 
oarse → horizontal → verti
al
→ diagonal, des
ending just as the transform does.13Note that another problem with 
ommon CS assump-tions applied to images is that the typi
al s
ale of 
oef-�
ients along a 
oarse-to-�ne ordering follows a smoothpower law, it does not exhibit the abrupt drop from �sig-ni�
antly above noise level� to �exa
tly zero� often requiredby CS theory.
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Number of measurementsFigure 2. Experiments for measuring natural images (64×
64 = 4096 pixels). Shown are L2-re
onstru
tion errors av-eraged over 25 grays
ale images typi
ally used in 
omputervision resear
h (from de
sai.ugr.es/
vg/dbimagenes/)(± 1

4
std.dev. for �∗�). Noise level σ2 = 0.005. SBL: (Ji &Carin, 2007), Lp: Lp re
onstru
tion, L1 + TV: Lasso withTV/wavelet penalties, EP: our method. True σ2 supplied,

τ parameters 
hosen optimally for ea
h method individu-ally: τsp = τtv = 0.075 (L1 + TV), τsp = 0.075, τtv = 0.5(EP). New rows of X random unit norm (rand), a
tivelydesigned (opt), a

. to wavelet heuristi
 (heur).(a): Start with m = 100, X random unit norm. (b-d):Start with m = 100, 200, 400, X a

. to wavelet heuristi
.re
onstru
tions than using standard wavelet 
oe�
ient�lters top-down. While CS theorems are mathemati-
ally intriguing, and while there 
ertainly are impor-tant appli
ations that bene�t from these results14, lin-ear image measurement is probably not among them.On the other hand, the wavelet heuristi
 method issigni�
antly outperformed by our EP method, where
X is designed sequentially. In (2a), EP qui
kly re-
overs from the suboptimal initial random X. More-over, even when started from the same point as thewavelet heuristi
 (2b-d), the designed measurementslead to improvements over the heuristi
 immediately.14The theoreti
al CS setting is more extreme than whatis really required here, in that there is no prior knowledgeabout where the non-zeros will lie. We spe
ulate that moresuitable appli
ations 
ould lie in steganography, spam orintrusion dete
tion, where a signal has to be dete
ted whi
hhas been hidden by an adversary.

EP(heur) is doing EP re
onstru
tion, but based onthe same measurements as L2(heur). While it slightlyoutperforms L2 re
onstru
tion, the signi�
ant di�er-en
e is due to the 
hoi
e of the measurements. Ourmethod therefore provides an e�
ient solution to theproblem posed in (Weiss et al., 2007), namely how tolearn measurements automati
ally from data, startingfrom little 
on
rete domain knowledge. On the par-ti
ular problem of measuring images linearly, our �nd-ings should be put into perspe
tive, by noting thatthe L2 wavelet heuristi
 is vastly faster to 
ompute15.Moreover, X is optimised sequentially, parti
ular tothe image u (but without knowing the underlying u),while the wavelet heuristi
 �lters are always the same.Finally, the �nal X is is dense and unstru
tured. How-ever, our method 
an be used in the same way to ad-dress appli
ations where strong stru
tural 
onstraintson allowable X are present, and where wavelet (orpurely random) measurements are not an option.In this setting, SBL (Ji & Carin, 2007) performs mu
hworse than all other methods tried, whether using ran-dom, wavelet or designed measurements. Results forSBL in 
ases (b-d) were even worse and are not in-
luded to fa
ilitate 
omparison among the others. Thisis most probably an extreme instan
e of the problemnoted in Se
tion 4.1. Premature sparsi�
ation, in lightof not stri
tly sparse signals, leads to poor results evenwith random X. Their 
ovarian
e estimates seem toobad to steer sequential design in a useful dire
tion16.Finally, the deterioration of L1, when adding randomto initial wavelet measurements, is somewhat puz-zling, espe
ially sin
e it does not happen for L1 + TV.These additional measurements provide novel informa-tion about the true u, so a valid inferen
e methodshould rather improve.5. Dis
ussionWe have shown how to address the 
ompressive sensingproblem with Bayesian experimental design, where de-signs are optimised to rapidly de
rease un
ertainty anddo not have to be 
hosen at random. In a large study15EP sequential design is still very e�
ient. A typi
alrun on one image took 53 min (on 64bit 2.33GHz AMD),for n = 4096 and q = 12160 sites: 16785 initial EP updates,then 308 in
rements of X by 3 rows ea
h, with on averageonly 8.8 site updates needed to regain EP 
onvergen
e (upto 85 updates after some in
rements).16In 
ases (b-d), top wavelet 
oe�
ients are measuredinitially, so their method 
on�dently starts with a highlyover-sparse solution and fails. Note that, as opposed to EP,we restarted the SBL 
ode after ea
h new measurement,so that poor 
urrent solutions are not inherited when newdata is obtained.



Compressed Sensing and Bayesian Experimental Designabout linearly measuring natural images, we show thatCS re
onstru
tion methods based on randomly drawn�lters are outperformed signi�
antly by standard leastsquares re
onstru
tion measuring 
oarse-s
ale wavelet
oe�
ients. Our �ndings suggest that the appli
abil-ity of CS results (with their insisten
e on stri
t andunstru
tured signal sparsity) to natural image appli-
ations should be re
onsidered. We also show thatour Bayesian sequential design method, starting froma model with little domain knowledge built in, is ableto �nd �lters with signi�
antly better re
onstru
tionproperties than top-down wavelet 
oe�
ients. Our�ndings indi
ate that e�
ient Bayesian experimentaldesign te
hniques are highly promising for CS appli
a-tions of di�erent kinds just as well.Why do random measurement �lters enjoy good prop-erties in CS theory, but are not useful in the 
aseof natural images? We think that this seeming 
on-tradi
tion really 
omes from an erroneous �extrapola-tion� of what CS theorems really mean. Any stru
tureapart from a randomly distributed sparsity pattern isignored there. Also, they are minimax results, in thatthe re
onstru
tion error for the worst sparsity patternis bounded. But undersampled image re
onstru
tionis not a worst-
ase problem, and mu
h is known aboutthe sparsity stru
ture of natural images. It may bethat L1 or L1 + TV are minimax methods (for known
B), but that does not imply mu
h about their typi-
al performan
e. We suspe
t that our doubts aboutCS with random measurements extend beyond natu-ral images to other signals of 
ommon interest in nor-mal non-adversarial situations, sin
e interest in a sig-nal 
lass implies that statisti
al knowledge about thembeyond random sparsity has been obtained.Our experien
e with the method of (Ji & Carin, 2007),whi
h we 
ompare against in our study, raises anothermore spe
ulative, yet interesting point. Several meth-ods very frequently used in ma
hine learning today
an loosely be summarised as trying to dete
t verysparse solutions early on, mainly with the aim of high
omputational e�
ien
y. For example, SBL (Tipping,2001) is mu
h more aggressive in this respe
t than ourEP method here. Early sparsi�
ation does not seemto hurt mean predi
tion performan
e mu
h, and thusis embra
ed for e�
ien
y. However, our experien
eshere indi
ate that it is the 
ovarian
e (or un
ertainty)estimates that 
an be badly hurt by su
h sparsity-by-elimination pro
esses, and that in 
ontexts su
h as ex-perimental design, where 
ovarian
es are more impor-tant than predi
tive means, their appli
ation shouldprobably be avoided. The 
hallenge is then to de-velop methods that run e�
iently without eliminatingmany variables early on, and our sele
tive site updat-

ing method for EP is a step in that dire
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