
Compressed Sensing and Bayesian Experimental DesignKeywords: Compressed Sensing, Experimental Design, Approximate Bayesian Inferene, Image Measurement,Expetation Propagation, Sparsity Prior, Wavelet TransformationAbstratWe relate ompressed sensing (CS) withBayesian experimental design and providea novel e�ient approximate method forthe latter, based on expetation propaga-tion. In a large omparative study aboutlinearly measuring natural images, we showthat the simple standard heuristi of mea-suring wavelet oe�ients top-down system-atially outperforms CS methods using ran-dom measurements; the sequential projetionoptimisation approah of (Ji & Carin, 2007)performs even worse. We also show that ourown approximate Bayesian method is able tolearn measurement �lters on full images e�-iently whih outperform the wavelet heuris-ti. To our knowledge, ours is the �rst su-essful attempt at �learning ompressed sens-ing� for images of realisti size. In ontrast toommon CS methods, our framework is notrestrited to sparse signals, but an readily beapplied to other notions of signal omplexityor noise models. We give onrete ideas howour method an be saled up to large signalrepresentations.1. IntrodutionThere has been a lot of reent interest in the areaof ompressed sensing (CS) (Candès et al., 2006;Donoho, 2006), where it is argued that if signals anbe expeted to be ompressible due to sparseness aftersome linear transform, then they an be reonstrutedfrom a number of measurements signi�antly below theNyquist/Shannon limit, if the measurement design isnot too regular. In this paper, we relate CS to themore general notion of statistial (Bayesian) experi-mental design.Preliminary work. Under review by the International Con-ferene on Mahine Learning (ICML). Do not distribute.

Through this view, harateristis of signals and al-gorithms, de�ned in an abstrat mathematial way inthe CS literature so far, beome understandable andworkable. The experimental design approah appliesto signals of low omplexity in general, not only tosparse ones. It has the potential to learly outper-form the randomised designs, favoured by theoretialCS arguments, in ases where signals are not well-desribed by ommon CS assumptions. For exam-ple, CS has been viewed with some septiism so farby researhers in omputer vision and image statistis(Weiss et al., 2007). While images exhibit transformsparsity to some degree, purely random measurementdesigns an be suboptimal for them. The reason is thatthere is more to low-level image statistis than spar-sity. Muh of this knowledge an be modeled tratably(Simonelli, 1999) and ould therefore be inorporatedinto a Bayesian experimental design arhiteture. Toour knowledge, the urrent CS reonstrution shemesare purely estimation-based and lak proper represen-tations of unertainty (whih is what fundamentallydrives experimental design), and the theory deals ex-lusively with signals whih are unstrutured exeptfor random sparsity. We present experimental resultssheding more light on the relationship between CSand images. Similar to (Weiss et al., 2007), we �ndthat standard approahes to linear image measure-ment (wavelet oe�ients) give signi�antly better re-onstrution results than using random measurementsfavoured by CS, even if modern CS reonstrution al-gorithms are applied. Yet, our experimental evideneis more substantial than theirs. Beyond that, we showthat our e�ient approximation to sequential Bayesiandesign an be used to learn measurements whih in-deed outperform measuring wavelet oe�ients top-down. Our method provides a pratially e�ient so-lution to the problem posed in (Weiss et al., 2007),namely how to learn measurement �lters automatiallyfrom data (using very little onrete knowledge aboutthe signal lass) whih perform lose to or even bet-ter than �standard� ones obtained through deades ofresearh and experiene. In ontrast, the unertainomponents analysis algorithm suggested by them re-



Compressed Sensing and Bayesian Experimental Designquires a large database of image pathes to be run, andould hardly be saled up to the realisti dimensionstreated here1.An approximate Bayesian approah to ompressedsensing has been presented in (Ji & Carin, 2007), mak-ing use of sparse Bayesian learning (SBL) (Tipping,2001). Our method is based on a di�erent, more gen-eral inferene approximation, expetation propagation(Minka, 2001), and outperforms theirs very signi�-antly, for predition based on the same design and,even more so, for sequential design optimisation, aswe show in omparative experiments below. More-over, strongly underdetermined problems (many morevariables than observations) are dealt with more e�-iently in our framework. In addition, our frameworkis generalised easily to non-Gaussian observation likeli-hoods, skew prior terms, and generalised linear models(Gerwinn et al., 2008), and our methodology, our om-parisons, as well as our disussion here have a broadersope. Our method is an extension of the sheme in(Seeger et al., 2007). However, the appliations toimages onsidered here are orders of magnitude largerthan theirs, and several novel ideas are proposed herein order to inrease omputational e�ieny substan-tially. While muh work has been done in statistis onexperimental design for the lassial Gaussian-linearmodel, Gaussian priors are entirely inappropriate forimages2, and designs optimized for them are subopti-mal (see also (Seeger et al., 2007)). We are not awareof existing methods for the model used here, whihsale omparable to ours, with the exeption of (Ji &Carin, 2007).A di�erent approah for optimising measurement de-sign is given in (Elad, 2007), where X is designed apriori with the aim of making its rows maximally de-oherent. In our setup, X is designed sequentially,using Bayesian information riteria.The struture of the paper is as follows: The exper-imental design view on CS is detailed in Setion 2.Our framework for approximate inferene is desribedin Setion 3, where we also show how to apply it tolarge problems, espeially in sequential experimentaldesign. Our approah is validated through a series ofexperiments, omparing it to (Ji & Carin, 2007) andommon CS methods on arti�ial data (Setion 4.1),and analysing the suitability of CS and Bayesian ex-1Their experiments are on 4 × 4 image pathes, whileours run e�iently on 64 × 64 images.2Reonstrution under the Gaussian-linear model issimply the method of least squares, often referred to as�linear reonstrution�. Muh of the improved performanethrough CS is due to the use of non-linear sparse reon-strution tehniques.

perimental design on natural images (Setion 4.2).2. Compressed Sensing andExperimental DesignCompressed sensing (CS) (Candès et al., 2006;Donoho, 2006) an be motivated as follows. Sup-pose a signal, suh as an image or a sound waveform,is measured and then transferred over some hannelor stored. Traditionally, the measurement obeys theNyquist/Shannon theorem, allowing for an exat re-onstrution of the (band-limited) signal if there is nomeasurement noise. However, what follows is usuallysome form of lossy ompression, exploiting redundan-ies and non-pereptibility of losses. Given that, anthe information needed for a satisfatory reonstru-tion not be measured below the Nyquist frequeny(this is alled undersampling)? In many key applia-tions today, the measurement itself is the main bottle-nek for ost redutions or higher temporal/spatial res-olution. Reent theoretial results indiate that under-sampling should work well if randomized designs areused, and if the signal reonstrution method spei�-ally takes the �ompressibility� into aount.Bayesian experimental design enompasses the CSproblem. Here, the �ompressibility� of signals is en-oded in a prior distribution, under whih signals oflow omplexity in general, or high (transform) sparsityin partiular, have most mass. While an undersam-pling violates the Nyquist theorem, signals an oftenstill be reonstruted if they are su�iently likely un-der the prior. But not every way of undersampling willdo. Experimental design is onerned with optimisingthe measurement struture (alled design), so as toobtain the desired information at the lowest possibleost. This is easily explained by onsidering the modelof interest here. Let u ∈ R
n be latent variables (pixelsof an image), and let y ∈ R

m be noisy measurementsthereof. The model lass of interest is
P (u|y) ∝ N(y|Xu, σ2I)

q
∏

i=1

ti(si), s = Bu. (1)The likelihood P (y|u) is Gaussian and underdeter-mined (n > m). The prior3 is a produt of univariatenon-Gaussian potentials ti(si). It is omputationallyadvantageous, yet not essential, that the log ti be on-ave (Seeger, 2008), and in this paper we use Laplaianpotentials
ti(si) =

τ

2
e−τ |si|, (2)3We do not require that the prior potential is atuallya normalisable distribution over u, the models of interesthere are of the undireted Markov random �eld (or �energy-based�) type.



Compressed Sensing and Bayesian Experimental Designwhih are of this sort. If number of image pixels nis large, it is important for omputational e�ienythat matrix-vetor multipliations (MVMs) with Band BT (less important: with X, XT ) an be donee�iently, and that B does not have to be stored ex-pliitly.The unknown signal u (an image for now) should be�ompressible�, i.e. it should exhibit transform spar-sity4: after some �xed linear mapping B, suh as awavelet transform, s = Bu has many oe�ients silose to zero. An image oder would set these to ex-atly zero, thereby ompressing the image. �Expetedtransform sparsity� is enoded in a sparsity prior, inour ase the produt of Laplaians (2). As opposed toa Gaussian, a Laplae distribution onentrates moremass lose to zero, foring oe�ients to be very small.On the other hand, the Laplaian also has more massin the tails, whih allows for oasional large values.These points are explained further in (Seeger, 2008;Tipping, 2001).Next, the design is X, the measurement matrix. Inour example, eah row of X is a linear �lter spei-fying a single image measurement. In this paper, weassume that all rows of X have unit norm5. The prob-lem of experimental design is how to hoose X amongmany andidates of the same ost, so that subsequentmeasurements allow for the best reonstrution of u.This deision has to be taken without doing real mea-surements for most andidates. In a Bayesian variant,the posterior distribution P (u|y) enodes all presentknowledge. To sore a andidate X∗ (new rows of
X), assume for the moment that the outome y∗ isknown. We an measure the derease in unertaintyfrom P (u|y) to P (u|y,y∗) by the entropy di�erene
H[P (u|y)] − H[P (u|y,y∗)]. Not knowing y∗, we in-tegrate it out using P (y∗|y) =

∫

P (y∗|u)P (u|y) du.This expeted information sore drives the optimisa-tion of the design. It is lear that suh sores are fun-damentally based on the posterior as representation ofunertainty, so that algorithms whih merely estimategood solutions from given data annot be used diretlyin order to ompute them6. With suh methods, eitherrough rules of thumb have to be followed to obtain a4In our experiments, we use an extended notion of spar-sity, see Setion 3.2.5When designing X, it is important to keep its rowsof the same sale. Otherwise, a measurement an alwaysbe improved (at �xed noise level σ2) simply by inreasingits norm. Put di�erently, we plae a prior on X whih isuniform over all matries with rows of unit norm.6It is one thing to learn to predit well, yet a di�erentissue to estimate its own unertainty well, and methodsemploying �premature sparsi�ation� often perform badlyw.r.t. the latter (see Setion 4.1).

design (�make it random� in CS), or many measure-ments have to be taken in a trial-and-error fashion. InBayesian experimental design, a permanently re�nedunertainty representation is used to avoid uninforma-tive data sampling, so often many fewer real measure-ments are required.3. Approximate InfereneBayesian inferene is in general not analytiallytratable for models of the form (1), and has to beapproximated. Moreover, the appliations of inter-est here demand a high e�ieny in many dimensions(n = 4096 in the natural image experiments here). Im-portantly, Bayesian experimental design does not onlyrequire inferene just one, but many times in a se-quential fashion. We make use of the expetation prop-agation (EP) method (Minka, 2001), together with arobust and e�ient representation for Q(u) ≈ P (u|y).Our framework has previously been used in a di�er-ent ontext (Seeger, 2008), where details an be foundwhih are omitted here. As a novelty, we will show herehow the framework an be run e�iently for large n,and how sequential design optimisation an be doneorders of magnitude faster.In EP, the posterior P (u|y) is approximated by aGaussian Q(u) with free (variational) parameters b,
π, whih are formally introdued by replaing ti(si)by t̃i(si) = ebisi−πis

2

i
/2 in (1). The distribution Q(u)is represented by lower triangular L and γ,

LLT = σ−2XT X + BT
ΠB = CovQ[u]−1,

γ = L−1(σ−2XT y + BT b), Π = diag π,so that EQ[u] = L−T γ. The (bi, πi) are then updatedsequentially by mathing the Gaussian moments of thetilted distributions
P̂i(u) ∝ N(y|Xu, σ2I)

∏

j 6=i

t̃j(sj)t̃i(si)
1−ηti(si)

ηwith the new Q′(u). Here, η ∈ (0, 1] is a frationalparameter7. In eah loal update, we need to omputethe non-Gaussian moments of the marginal P̂i(si), andto update the Q(u) representation, whih is done by an
O(n2) Cholesky update of L. Note that (Ji & Carin,2007) employ the variational mean �eld approxima-tion of (Tipping, 2001), whih is spei� to sparse lin-ear models (more preisely, all ti have to be Gaussiansale mixtures, thus even funtions), while EP an be7η = 1 gives standard EP, but hoosing η < 1 an in-rease the robustness of the algorithm on the sparse linearmodel signi�antly (Seeger, 2008). We use η = 0.9 in allour experiments.



Compressed Sensing and Bayesian Experimental Designapplied with little modi�ation to models with skewpriors or non-Gaussian skew likelihoods as well (Ger-winn et al., 2008).In our appliations of sequential design, we need tosore the informativeness of new andidates x∗ (as rowof X), whih we do by the entropy di�erene (see Se-tion 2). If Q′ is the approximate posterior after in-luding x∗, then 2H[Q′] = log |CovQ′ [u]| + C, where
Q′ di�ers from Q in that (X ′)T X ′ = XT X + x∗xT

∗ ,and π → π′. We approximate the entropy di�ereneby assuming that π′ = π, whene
H[Q] − H[Q′] =

1

2
log

(

1 + σ−2xT
∗ CovQ[u]x∗

)

.Sine ‖x∗‖ = 1 by assumption, this sore is maximizedby hoosing x∗ along the prinipal (leading) eigendi-retion8 of CovQ[u]. The same sore is used by (Ji &Carin, 2007).3.1. Large-Sale AppliationsThere are two major issues with trying to apply ourmethod for large sizes n. First, the EP site updatesare done in random sweeps over n sites, beause it isnot lear whih partiular site ordering leads to fastestonvergene. This problem is severe in our sequentialdesign appliation to natural images, sine there aremany small hanges to X, y (individual new mea-surements), after eah of whih EP onvergene hasto be regained. We approah it by forward soringmany site andidates before eah EP update, therebyalways updating the one whih gives the largest pos-terior hange. This is detailed just below. Seond,the robust Q representation of (Seeger, 2008) is of size
O(n2), and eah update osts O(n2). We sketh a dif-ferent representation of size O(m2) below, whih anbe used to drive our framework as well. In ontrast, (Ji& Carin, 2007) use a heuristi of setting many of the πito ∞ early in the iteration, whih leads to muh worseresults than we obtain (see Setion 4.1, Setion 4.2).Our seletive updating sheme for EP hinges on thefat that we an maintain all site marginals h, ρ,
Q(si) = N(hi, ρi), up to date at all times. For a site
i, we an quantify the hange of Q through an updatethere by D[Q′(si) ‖Q(si)] (Q′ the posterior after theupdate at i), whih an be omputed in O(1). Impor-tantly, D[Q′(u) ‖Q(u)] = D[Q′(si) ‖Q(si)] (beause
Q(u|si) = Q′(u|si)), so the sore preisely measuresthe global amount of hange Q → Q′. We maintaina list of andidate sites, whih are sored before eahEP update, and the update is done for the winneronly. The list is then evolved by replaing the lower8We ompute x∗ by the Lanzos algorithm.

half of worst-soring sites by others randomly drawnfrom {1, . . . , q}. Importantly, the marginals h, ρ anbe updated along with the representation, at the ex-pense of only one additional L baksubstitution andMVM with B. Namely, if π′
i = πi +∆πi, b′i = bi +∆bi,and w := BL−T (L−1BT

i,·), then
ρ′ = ρ−

∆πi

1 + ρi∆πi
w ◦w, h′ = h +

∆bi − hi∆πi

1 + ρi∆πi
w.Here, L−1BT

i,· has to be omputed for the L updateanyway. This idea is used in the experiments desribedin Setion 4.2.For large n, storing an n×n matrix in memory beomesprohibitive. In a less ostly representation, we exploit
m ≪ n. We require9 that B = I. The Woodburyformula gives

CovQ[u] = Π
−1 − Π

−1XT L−T L−1XΠ
−1,where LLT = I + XΠ

−1XT , so L (di�erent fromabove) is of size m2 only. An EP update requires
O(m2) and two MVMs with X, rather than O(n2)above. While this representation is exat, it is numer-ially less robust to update than the O(n2) one.3.2. Image Model. Other MethodsIn this setion, we provide further details about theonrete model we use in our experiments with natu-ral images. Our prior enourages two di�erent notionsof sparsity in an image. First, a multi-sale wavelettransform of u should be sparse, modeling the obser-vation that natural images an be ompressed well ina wavelet domain. Seond, the �nite di�erenes in thehorizontal and vertial diretion should exhibit spar-sity, aounting for spatial smoothness often found inimages10. A frequently used penalty term for the lat-ter is the L1 norm of the image gradient, also knownas total variation.Our model is an instane of (1), where all ti are Lapla-ian (2). s, and therefore B, deompose into two dif-ferent parts: BT = (B(sp)T B(tv)T ). Equivalently, theprior is the produt of two potentials. The transformsparsity potential is a sparsity prior on the waveletoe�ients of u. Note that the Laplae distributionis a sensible andidate to �t wavelet oe�ient his-tograms from natural images (Simonelli, 1999). Thus,9More generally, BT

ΠB must be easy to invert. If Bis invertible and B−1-MVM feasible, we represent Q(s)rather than Q(u).10Reall what we mean by sparsity from Setion 2: mostoe�ients are fored to be small, by allowing some to belarge. Oasional large omponents in the gradient orre-spond to edges in the image.



Compressed Sensing and Bayesian Experimental Design
B(sp) ∈ R

n×n is a multi-sale orthonormal wavelettransform, and the potential is exp(−τsp‖B
(sp)u‖1).The total variation potential is a Laplae prior on theimage gradient, i.e. the di�erenes between horizontaland vertial pixel neighbours11. B(tv) ∈ R

2(n−√
n)×n isa sparse strutured matrix, mapping the image u to itsgradient. Here, we assume that n = 22k for simpliity.The total variation potential is exp(−τtv‖B

(tv)u‖1).Therefore, we have q ≈ 3n for the size of s. Also, thepotentials ome with di�erent sale parameters τsp,
τtv. Importantly, neither of B(sp), B(tv) has to bestored in memory, and MVM with B or BT an bedone in O(n).We also brie�y desribe the methods we ompareagainst. Most of them ome with a transform spar-sity potential only, so that s = B(sp)u. The methodof (Ji & Carin, 2007) is alled SBL here. In Lpreonstrution, ŝ = argmin{‖s‖p |XB(sp)T s = y},
û = B(sp)T ŝ. For L2 we just solve the normal equa-tions, while for L1 this is a linear program. Notethat the latter is used in many CS publiations (Can-dès et al., 2006; Donoho, 2006). A method withtransform sparsity and total variation potential, alled
L1 + TV here, is given by the following quadrati pro-gram: û = argmin 1

2‖y − Xu‖2
2 + τspσ

2‖B(sp)u‖1 +
τtvσ2‖B(tv)u‖1 (Candès & Romberg, 2004). We usedthe following ode in our experiments:SBL: www.ee.duke.edu/∼shji/BCS.html
L1: www.am.alteh.edu/l1magi/
L1 + TV: www.stanford.edu/∼mlustig/4. ExperimentsIn this setion, we provide experimental results for dif-ferent instanes of our framework, omparing to CSand approximate Bayesian methods on syntheti data(Setion 4.1), and on the task of measuring naturalimages (Setion 4.2).4.1. Arti�ial SetupsIt is ustomary in the CS literature to test methodson syntheti data, generated following the �truly sparseand otherwise unstrutured� assumptions under whihasymptoti CS theorems are proven. We do the samehere, expliitly using the �(non-)uniform spikes� (Ji &Carin, 2007), but over some other heavy-tailed dis-tributions as well. It seems that not many signals ofreal-world interest are stritly and randomly sparse, so11This potential on its own is not normalisable as distri-bution over u, being invariant against adding a onstantto all pixels.

that studies looking at the robustness of CS theoreti-al laims are highly important. In this setion, signalsare sparse as suh, so that B = I and u = s here. Weompare methods desribed in Setion 3.2. It is im-portant to stress that all methods ompared here (ex-ept for L2) are based on exatly the same underlyingmodel (1) with B = I, and di�erenes arise only in thenature of omputations (approximate Bayesian versusmaximum a-posteriori optimisation) and in whether Xis sequentially designed (EP, SBL) or hosen at ran-dom (Lp reonstrution; we follow CS theory (Candèset al., 2006; Donoho, 2006) and sample rows of X uni-formly of unit norm). Results are shown in Figure 1.
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512. Shown are L2-reonstrution errors (mean±std.dev.over 100 runs). All methods start with same random initial
X (m = 40), then �(rand)� add random rows, �(opt)� op-timise new rows sequentially. Noise variane σ2 = 0.005,prior sale τ = 5. SBL: (Ji & Carin, 2007), Lp: Lp re-onstrution, EP: our method. (a-): i.i.d. zero mean, unitvariane Gaussian, Laplaian (Eq. 2), Student's t (3 d.o.f.).(d): n

2
of ui = 0, n

4
exponential deay 1, . . . , 0, n

4
minusthat, randomly permuted. (e-f): 20 ui 6= 0 at random;(e) uniform spikes, ui ∈ {±1}; (f): non-uniform spikes,

ui ∼
1

4
+ |t|, t ∼ N(0, 1); as in (Ji & Carin, 2007). Distri-butions in (d-f) normalised to unit variane.The �sparsity� (or super-Gaussianity) of the signal dis-tributions inreases from (1a) to (1e-f). For Gaussiansignals (1a), L2 reonstrution based on random mea-surements is optimal. While all CS methods and SBL



Compressed Sensing and Bayesian Experimental Design(random and designed) lead to large errors, EP withdesign mathes the L2 results, thus shows robust be-haviour. For Laplaian and Student's t signals (1b-), designed EP outperforms L2 reonstrution signif-iantly, while even the CS L1 method still does worsethan simple least squares. SBL performs poorly in allthree ases with signals not truly sparse, thus is notrobust against rather modest violations of the stritCS assumptions. Its non-robustness is also witnessedby large variations aross trials.On the other hand, L2 performs badly on truly sparsesignals. In all ases (1d-f), EP with design signi�-antly outperforms all other methods, inluding de-signed SBL, with speial bene�ts at rather small num-bers of measurements. SBL does better now with trulysparse signals, and is able to outperform L1.From the superior performane of EP with design onall signal lasses, we onlude that experimental de-sign an sequentially �nd measurements that are sig-ni�antly better than random ones, even if signals aretruly sparse. Moreover, the superior performane isrobust against large deviations away from the under-lying model, more so even than lassial L1 or L2 es-timation. The poor performane of SBL (Ji & Carin,2007) seems to ome from their desire for �prematuresparsi�ation�. During their iterations, many πi arelamped to +∞ early for e�ieny reasons. This doesnot hurt mean preditions from urrent observationsmuh, but a�ets their ovariane approximation dras-tially: most diretions not supported by the dataright now are somewhat ruled out for further mea-surements, sine posterior variane along them (whihshould be large!) is shrunk in their method. In on-trast, in our EP method, none of the πi beome verylarge with modest m, and our ovariane approxima-tion seems good enough to suessfully drive experi-mental design. Without premature sparsi�ation, oursheme is still e�ient, sine the most relevant siteupdates are found atively, and the need to eliminatevariables does not arise.4.2. Natural ImagesIn this setion, we are onerned about �nding linear�lters whih allow for good reonstrution of naturalimages from noisy measurements thereof. Sine nat-ural images exhibit sparsity in wavelet or Fourier do-mains, CS theory seems to suggest that random mea-surements should be well-suited for this purpose, andthere have been onsiderable e�orts to develop hard-ware whih an perform suh random measurementsost-e�iently (Duarte et al., 2008). On the otherhand, muh is known about low level natural image

statistis, and powerful linear measurement transformshave emerged there, suh as multi-sale wavelet trans-forms, based on whih natural image reonstrutionshould be substantial better than for random measure-ments (Weiss et al., 2007).The sparsity of images in a wavelet domain is highlystrutured, there is a lear ordering among the oe�-ients from oarse to �ne sales: natural images typ-ially have muh more energy in the oarse-sale o-e�ients, and oe�ients with very small values arepredominantly found in the �ne sales. In our ex-periments, we employ a simple heuristi for linearlymeasuring images, alled wavelet heuristi in the se-quel: every measurement omputes a single waveletoe�ient, and the sequential ordering of the mea-surements is deterministi top-down, from oarse to�ne sales12. This ordering is a pragmati strategy: ifmainly the oarse-sale oe�ients are far from zero,they should be measured �rst13. Do state-of-the-artCS reonstrution algorithms, based on random linearimage measurements, perform better than simple L2reonstrution based on the wavelet heuristi? Andhow does Bayesian sequential design perform on thistask, if the model desribed in Setion 3.2 is used?Note that no prior knowledge about typial orderingor dependene among wavelet oe�ients in enodedin this model either. Results of our study are given inFigure 2.In fat, we started our exploration with what is shownin (2a), where 100 initial �lters are drawn at random(exept for L2(heur)). Intrigued by the fat that thewavelet heuristi method L2(heur) outperformed allCS variants signi�antly, we tried to give them a head-start, supplying m = 100, 200, 400 wavelet heuristimeasurements initially (2b-d). However, the system-ati under-performane of methods whih have spar-sity regularizers built in, yet do random rather thanwavelet measurements, remains onsistently present.From these results we onlude, muh as (Weiss et al.,2007) argued on theoretial grounds, that if naturalimages are to be measured suessively by unit norm,but otherwise unonstrained linear �lters, then draw-ing these �lters at random leads to signi�antly worse12This ordering follows the reursive de�nition of suhtransforms: downsampling by fator two (oarse), horizon-tal di�erenes, vertial di�erenes, diagonal orretions ateah stage. Our ordering is oarse → horizontal → vertial
→ diagonal, desending just as the transform does.13Note that another problem with ommon CS assump-tions applied to images is that the typial sale of oef-�ients along a oarse-to-�ne ordering follows a smoothpower law, it does not exhibit the abrupt drop from �sig-ni�antly above noise level� to �exatly zero� often requiredby CS theory.
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d) 400 initial Wavelet measurements
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Number of measurementsFigure 2. Experiments for measuring natural images (64×
64 = 4096 pixels). Shown are L2-reonstrution errors av-eraged over 25 graysale images typially used in omputervision researh (from desai.ugr.es/vg/dbimagenes/)(± 1

4
std.dev. for �∗�). Noise level σ2 = 0.005. SBL: (Ji &Carin, 2007), Lp: Lp reonstrution, L1 + TV: Lasso withTV/wavelet penalties, EP: our method. True σ2 supplied,

τ parameters hosen optimally for eah method individu-ally: τsp = τtv = 0.075 (L1 + TV), τsp = 0.075, τtv = 0.5(EP). New rows of X random unit norm (rand), ativelydesigned (opt), a. to wavelet heuristi (heur).(a): Start with m = 100, X random unit norm. (b-d):Start with m = 100, 200, 400, X a. to wavelet heuristi.reonstrutions than using standard wavelet oe�ient�lters top-down. While CS theorems are mathemati-ally intriguing, and while there ertainly are impor-tant appliations that bene�t from these results14, lin-ear image measurement is probably not among them.On the other hand, the wavelet heuristi method issigni�antly outperformed by our EP method, where
X is designed sequentially. In (2a), EP quikly re-overs from the suboptimal initial random X. More-over, even when started from the same point as thewavelet heuristi (2b-d), the designed measurementslead to improvements over the heuristi immediately.14The theoretial CS setting is more extreme than whatis really required here, in that there is no prior knowledgeabout where the non-zeros will lie. We speulate that moresuitable appliations ould lie in steganography, spam orintrusion detetion, where a signal has to be deteted whihhas been hidden by an adversary.

EP(heur) is doing EP reonstrution, but based onthe same measurements as L2(heur). While it slightlyoutperforms L2 reonstrution, the signi�ant di�er-ene is due to the hoie of the measurements. Ourmethod therefore provides an e�ient solution to theproblem posed in (Weiss et al., 2007), namely how tolearn measurements automatially from data, startingfrom little onrete domain knowledge. On the par-tiular problem of measuring images linearly, our �nd-ings should be put into perspetive, by noting thatthe L2 wavelet heuristi is vastly faster to ompute15.Moreover, X is optimised sequentially, partiular tothe image u (but without knowing the underlying u),while the wavelet heuristi �lters are always the same.Finally, the �nal X is is dense and unstrutured. How-ever, our method an be used in the same way to ad-dress appliations where strong strutural onstraintson allowable X are present, and where wavelet (orpurely random) measurements are not an option.In this setting, SBL (Ji & Carin, 2007) performs muhworse than all other methods tried, whether using ran-dom, wavelet or designed measurements. Results forSBL in ases (b-d) were even worse and are not in-luded to failitate omparison among the others. Thisis most probably an extreme instane of the problemnoted in Setion 4.1. Premature sparsi�ation, in lightof not stritly sparse signals, leads to poor results evenwith random X. Their ovariane estimates seem toobad to steer sequential design in a useful diretion16.Finally, the deterioration of L1, when adding randomto initial wavelet measurements, is somewhat puz-zling, espeially sine it does not happen for L1 + TV.These additional measurements provide novel informa-tion about the true u, so a valid inferene methodshould rather improve.5. DisussionWe have shown how to address the ompressive sensingproblem with Bayesian experimental design, where de-signs are optimised to rapidly derease unertainty anddo not have to be hosen at random. In a large study15EP sequential design is still very e�ient. A typialrun on one image took 53 min (on 64bit 2.33GHz AMD),for n = 4096 and q = 12160 sites: 16785 initial EP updates,then 308 inrements of X by 3 rows eah, with on averageonly 8.8 site updates needed to regain EP onvergene (upto 85 updates after some inrements).16In ases (b-d), top wavelet oe�ients are measuredinitially, so their method on�dently starts with a highlyover-sparse solution and fails. Note that, as opposed to EP,we restarted the SBL ode after eah new measurement,so that poor urrent solutions are not inherited when newdata is obtained.



Compressed Sensing and Bayesian Experimental Designabout linearly measuring natural images, we show thatCS reonstrution methods based on randomly drawn�lters are outperformed signi�antly by standard leastsquares reonstrution measuring oarse-sale waveletoe�ients. Our �ndings suggest that the appliabil-ity of CS results (with their insistene on strit andunstrutured signal sparsity) to natural image appli-ations should be reonsidered. We also show thatour Bayesian sequential design method, starting froma model with little domain knowledge built in, is ableto �nd �lters with signi�antly better reonstrutionproperties than top-down wavelet oe�ients. Our�ndings indiate that e�ient Bayesian experimentaldesign tehniques are highly promising for CS applia-tions of di�erent kinds just as well.Why do random measurement �lters enjoy good prop-erties in CS theory, but are not useful in the aseof natural images? We think that this seeming on-tradition really omes from an erroneous �extrapola-tion� of what CS theorems really mean. Any strutureapart from a randomly distributed sparsity pattern isignored there. Also, they are minimax results, in thatthe reonstrution error for the worst sparsity patternis bounded. But undersampled image reonstrutionis not a worst-ase problem, and muh is known aboutthe sparsity struture of natural images. It may bethat L1 or L1 + TV are minimax methods (for known
B), but that does not imply muh about their typi-al performane. We suspet that our doubts aboutCS with random measurements extend beyond natu-ral images to other signals of ommon interest in nor-mal non-adversarial situations, sine interest in a sig-nal lass implies that statistial knowledge about thembeyond random sparsity has been obtained.Our experiene with the method of (Ji & Carin, 2007),whih we ompare against in our study, raises anothermore speulative, yet interesting point. Several meth-ods very frequently used in mahine learning todayan loosely be summarised as trying to detet verysparse solutions early on, mainly with the aim of highomputational e�ieny. For example, SBL (Tipping,2001) is muh more aggressive in this respet than ourEP method here. Early sparsi�ation does not seemto hurt mean predition performane muh, and thusis embraed for e�ieny. However, our experieneshere indiate that it is the ovariane (or unertainty)estimates that an be badly hurt by suh sparsity-by-elimination proesses, and that in ontexts suh as ex-perimental design, where ovarianes are more impor-tant than preditive means, their appliation shouldprobably be avoided. The hallenge is then to de-velop methods that run e�iently without eliminatingmany variables early on, and our seletive site updat-
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